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Data on the long wavelength limit S(0) of the liquid structure factor S(k) near the melting 
temperature T, are examined for about twenty liquid metals. S,_(O)/T, is sensibly constant 
within families of chemically similar liquid metals, or equivalently B n =  constant with B the 
bulk modulus and R the atomic volume. 

Pair potential theory of the vacancy formation energy E , ,  in units of k,T,  is then developed 
using a generalization of the hypernetted chain theory of liquid structure at T,,. This leads to the 
conclusion that in close-packed low melting point metals typified by Pb, the empirical value 
E, /k ,  T, - 10 arises from a strong cancellation between a negative term depending on S,_(O) and 
a positive contribution from the so-called bridge diagrams outside the core. The relation between 
E ,  and BC2 is also briefly discussed. 

1 INTRODUCTION 

Present analytic theories which relate liquid structure factor S(k)  to a pair 
potential 4 ( r )  remain at best semi-quantitative. The present paper is in this 
general area, but specifically for liquid metals. Our aims are first to expose 
substantial regularities among a whole class of liquid metals by focussing on 
the long wavelength limit S(0)  of the structure factor at  the melting 
temperature T,. Secondly by invoking one of the integral equation theories of 
liquid structure, namely the modified hypernetted chain (HNC) method,' we 

t Permanent address: Dipartimento di Fisica Teorica, Universita' di Trieste, Italy. 
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40 J. M. BERNASCONI, N. H. MARCH AND M. P. TOSI 

re-express the pair potential formula of Faber' for the vacancy formation 
energy E ,  in close-packed metals in such a form that we can throw light on 
the importance, and the nature, of the so-called bridge term in the modified 
HNC equation. This bridge term will be shown to be quite essential for the 
calculation of E ,  for the low melting point close-packed metals typified by 
Pb. 

The outline of the paper is as follows. In Section 2 immediately below we 
present the experimental data and emphasize the regularities to be accounted 
for. Then in Section 3 we discuss E,/k,  T, in terms of liquid structure theory. 

2 EMPIRICAL REGULARITIES OF LONG WAVELENGTH 
STRUCTURE FACTOR 

Table I collects experimental data for S(0) and the isothermal compressibility 
K ,  near the melting temperature T, of some twenty liquid  metal^.^ 

TABLE I 

Thermodynamic properties of liquid metals 

Liquid metal S,_(O) K,(10- 12cm2dyn- ') BQ(eV/atom) 

Li 
Na 
K 
Rb 
c s  
Be 
Mg 
Ca 
Sr 
Ba 
c u  

Zn 
Cd 
Hg 
A1 
Ga 
In 
TI 
Sn 
Pb 
Sb 
Bi 
Fe 

Ag 

0.03 1 
0.023 
0.023 
0.022 
0.024 
0.047 
0.025 
0.035 
0.031 
0.036 
0.021 
0.019 

0.015 
0.01 1 
0.005 
0.017 
0.005 
0.007 
0.0 10 

0.007 
0.009 
0.019 
0.009 

0.027 

(11) 
18.6 
38.2 
49.3 
68.8 

(1.9) 
5.06 

11.0 
13.1 
17.8 
1.49 
2.1 1 
2.50 
3.24 
3.75 

2.42 
2.19 
2.96 
3.83 
2.71 
3.49 
4.90 
4.21 
1.43 

1.3 
1.3 
1.2 
1.2 
1.1 

2.6 
2.9 
2.8 
2.9 
2.4 
5.0 
5.3 

3.6 
4.1 
3.8 

4.5 
5.0 
5.3 
4.5 

5.9 
5.3 
3.6 
4.7 

5.8 
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MELTING AND VACANCY ENERGY IN METALS 41 

From the Table, the alkali metals are seen to have a low value of BR where 
B = KT1 is the isothermal bulk modulus and SZ is the atomic volume, 
compared with all the rest. Excluding these, together with the alkaline earth 
metals, it will be seen that the rest of the liquids have rather constant BSZ 
reflected by an average value 

BQ = 4.7 -t 1.0 eV/atom. (2.1) 

From the fluctuation theory result 

we have the equivalent average statement 

STm(0)/k, T, N constant. (2.3) 

We stress that, for the exceptional cases, the statements that BSZ and 
S,_(O)/k,T, are constants are also true for (i) the alkali metals and (ii) the 
alkaline earth metals, but with substantially different constants. 

3 RELATION BETWEEN VACANCY FORMATION ENERGY 
IN HOT METAL CRYSTAL AND LIQUID STRUCTURE 
AT MELTING POINT 

Having exposed regularities in BR or equivalently ST,(O)/T,, we turn now to 
relate liquid structure theory to vacancy formation energy. This problem was 
examined by Bhatia and March4 for rare gas crystals: here we are solely 
concerned with metals. 

The starting point is the formula of Faber, which assumed (i) a pair 
potential d(r)  and (ii) that relaxation round the vacancy can be neglected. 
The convenient form for our purposes is that in r space as given by Minchin 
et u Z . , ~  namely 

Using the virial expression for the pressure yields4 

E ,  = - - P g(r)&r) dr - k,T,. 2 's (3.2) 
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To gain confidence in the application of Eq. (3.2) to hot close-packed 
metals we have taken computer simulation data6 for Al, and find from 
Eq. (3.2) that E ,  = 0.58 eV compared with an experimental value7 of 0.66 eV. 
This agreement demonstrates the usefulness of Eq. (3.2) for close-packed 
metals.? For comparison, Eq. (3.2) applied to Ar yields E ,  = 0.06 eV in good 
agreement with the experimental vdlueg of 0.05 eV. 

To examine a series of metals such as discussed in Section 2, we shall use 
the form of current liquid structure theory' by writing, at the melting 
temperature T, 

4 ( r ) / k B T  = h(r) - In g(r )  - c(r) - b(r), (3.3) 

c(r) being the Ornstein-Zernike function and h(r) = g ( r )  - 1 .  If the so-called 
bridge term, denoted by b(r), is put to zero, then Eq. (3.3) reduces to the so- 
called hypernetted chain (HNC) theory of structure. While b(r) as formally 
introduced in Eq. (3.3) constitutes the exact correction to that theory, in 
practice, of course, as will be discussed further below, it will have to be 
approximated for the present purposes by truncating a diagrammatic expan- 
sion at low order. 

However, we proceed by inserting Eq. (3.3) into Eq. (3.2) to find 

g(r) [h(r )  - In g(r ) ]  dr + 

(3.4) 

Considering the first term on the right-hand side of Eq. (3.4), we have 
numerically evaluated it using experimental structure data, for Na, K, Cs, Fe, 
and Ar. Though p varies by a factor of 10 over this range of liquids, we find 
the result 

- - p g(r)[h(r) - In g(r)] dr = -2.5 +_ 0.2. 2 ' S  (3.5) 

To fix ideas on magnitudes, E,/k,T, is recorded, from e~periment,~." in 
Table 11. Typically it is seen to be - 10, and hence Eq. (3.5) is only a modest 

7 The Faber formula will be inappropriate for vacancies in body-centred-cubic alkali metals, 
where Flores and March* have demonstrated that ionic relaxation round the vacant site 
contributes a major part of the formation energy in Na and K. 
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MELTING AND VACANCY ENERGY IN METALS 43 

TABLE I1 

Contributions to vacancy formation energies 

Metal E,(eV) E,/k,T, -+[I + c(r = 0)  - Z(k = O)] b= 4 p fg(*)b(r) dr 

c u  1.31 11.2 
Ag 1.11 10.5 
Au 0.94 8.2 
Zn 0.54 9.1 
Cd 0.39 7.6 
A1 0.66 8.3 
In 0.55 14.9 
Pb 0.50 9.7 

6.0 
- 1.5 
- 2.0 
- 14" 
- 26" 
- 5.0 
- 52" 
- 33 

9 
16 
14 
21  
37 
17 
70 
46 

In these cases, we have used the Percus-Yevick hard sphere value for c(r = 0)  in the 
absence of calculations from diffraction data. This is generally consistent with Table I of Ref. 
11:  namely c(r = 0)  is approximately constant for all liquid metals studied to date, and close 
to the Percus-Yevick value. 

contribution. Turning to the second term in Eq. (3.4), the work of Bhatia and 
March4 allows one to write 

From the work of Bernasconi and March," c(r = 0) is available from 
experimental structure data, while C(k = 0) is, essentially, recorded in Table I 
from thermodynamic measurements (c"(k) = 1 - l/S(k)). Using these data the 
quantity (3.6) is given in Table 11. The main point to note, at this stage, is the 
variation in sign and magnitude of this contribution. 

At this point, it is easy to demonstrate that setting b(r) = 0 in Eq. (3.3) 
leads to unphysical results in that it yields negative values of E ,  in most 
metals. An alternative might be to insert the Percus-Yevick approximation 
for 4 ( r )  in Eq. (3.2). Then the work of Johnson et al." shows in at least one 
example that the correct sign of E ,  is obtained but that the magnitude is 
much too small. 

In the absence of first principles calculation of b(r) for metals outside the 
core, the region clearly involved in the term 4 p f g(r)b(r) dr E 6 in  Eq. (3.4), 
we have chosen to estimate this empirically from Eq. (3.4) and the entries in 
Table 11. The values of 6thereby obtained are recorded in the final column of 
Table 11. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1
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3.1 Role of bridge term as an effective repulsive potential 

While we noted the variation in sign and magnitude of the second contribu- 
tion on the right-hand side of Eq. (3.4), Table I1 shows that the corresponding 
contribution from the bridge term is always positive. The simplest interpreta- 
tion of this result is to argue that in Eq. (3.4), b(r) is playing the role of an 
effective repulsive potential arising from many-particle correlations. While 
the quantity b(r) has been studied by earlier workers, and in particular by 
Rosenfeld and A~hcroft , ’~ their studies focussed mainly on the form of b(r) 
inside the core. This region is eliminated in Eq. (3.4) by the presence of g(r )  
multiplying b(r). 

More appropriate for our purposes is a formula valid asymptotically at 
large 1. This has been studied in the work of Iyetomi and Ichimaru14 in 
connection with the classical one-component plasma and by Ballone, Pastore 
and Tosi” in molten salts. This contribution to b(r) can be written as 

dr‘ dr“h(r’)h(r”)h( Ir’ - r”l)h( Ir - r”). (3.7) 

These calculations strongly suggest that b(4)(r), besides being repulsive, may 
have a non-monotonic behaviour, before decaying away to zero at sufficiently 
large r faster than either q%(r) or c(r). Such structure in b(r) from the available 
calculations is plainly a manifestation of indirect pair correlations due to 
many-particle structures. 

The conclusion that there is a likelihood of such structure in b(r) in some 
cases outside the core seems to be supported by the large contribution that 6 
makes to E,/k,T,, especially in Pb, In and Cd, namely metals for which 
S,_(O) is unusually low. 

3.2 

Related to this, Bernasconi and March1’ in their Figure 4.1 depict schemati- 
cally the form of c ( ~ )  outside the core in three metals Pb, Sn and Ga with 
small STm(0).  The negative region they exhibit is clearly related to the bridge 
term b(r) discussed above in terms of an effective repulsive potential. 
Returning to Eq. (3.3), when h(r) = g ( r )  - 1 is less than 1 then h(r) - In g(r)  is 
O(h2)  and this suggests 

Form of direct correlation function outside core 

c(r)  = -d(r)/kBTm - b(r) + O(h2)  (3.8) 
well outside the core. Thus b(r), from the above reasoning, can be expected to 
make an additional contribution to c(r)  at intermediate r. From Table 11, this 
contribution will be particularly large in Pb, in agreement with the deduction 
of Bernasconi and March. 
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4 SUMMARY AND CONCLUSION 

Liquid metals show marked regularities just above the melting temperature 
T,, exemplified by STm(0)/T, N constant within families of chemically similar 
metals. An equivalent statement is that BQ is approximately constant within 
such families. 

Then the rest of the paper has been concerned with the relation between 
vacancy formation energy E ,  in hot close-packed metals in units of kB T, and 
liquid structure theory. It is relevant to note here that proposals to relate E ,  
and BQ, both however in the low temperature solid, have been frequently 
made in the past. The present work demonstrates that E ,  does not correlate 
closely with BQ evaluated in the liquid state at T,. Rather E,/k,T, N 

constant is the significant correlation. From Eq. (2.2) at the melting tempera- 
ture this yields EU/STm(O)EQ N constant. That S,_(O) is not at all constant is 
plain from Table I. 

Returning to the relation to liquid structure theory, in the low melting 
point close-packed metals exemplified by Pb, a large negative contribution to 
the ratio E,/k,  T, as given by the Faber formula is demonstrated to arise from 
essentially the long wavelength structure factor STm(0). We infer therefore 
that a larger positive contribution must come from the bridge term b(r) 
outside the core. 

It is important to emphasize that while a first principles theory will have to 
start from a force field, usually described by a pair potential $ ( I ) ,  structural 
properties are less simply related to this quantity than in simple insulating 
liquids like Ar. Specifically, in Ar, the direct correlation function c(r) outside 
the core is already usefully approximated by - 4 ( r ) / k B  7: while a characteriza- 
tion of the depth of $(r)  is given by a constant times k ,  T,. In liquid metals, as 
we have demonstrated, neither of these correlations is close. What does 
emerge, in common with rare-gas systems, is that E J k ,  T, is rather accurately 
constant at a value of about 10. 

The final comments we want to make concern the relation of all this to the 
modern statistical mechanical theory of free~ing.'~.'' In this theory, the 
essential structural input information is the height of the principal peak of 
S(k) ,  which in the low melting point metals of Pb, Cd and Zn say does not 
take an anomalous value near freezing. This in turn suggests that the main 
microscopic order parameter, i.e. the first Fourier component of the crystal- 
line density, is not anomalous near melting, this being compatible with the 
constancy of E J k ,  T,. 
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